

DEPARTMENT OF CIVIL ENGINEERING 1 YEAR BE I SEMESTER SESSION 2017-18

- 1. Course Code : CE 100
- 2. Course Title : ENGINEERING MECHANICS

:

- 3. Credit : 3(2+1)
- 4. Theory Lecture Outlines

1.	Introduction of condition of equilibrium: Force, system of force, coplanar forces.
2.	Moment and couples: Moment and parallel forces, Couples, General
	conditions of equilibrium
3.	<i>Moment and couples:</i> Moment and parallel forces, Couples, General conditions of equilibrium
4.	<i>Practical Applications:</i> Levers, Cracked levers, Steel yards. Sagging chains and toggle joints.
5.	<i>Practical Applications:</i> Levers, Cracked levers, Steel yards. Sagging chains and toggle joints.
6.	<i>Centre of Gravity:</i> Centre of parallel forces, C.G. in some simple cases, C.G. of Solids.
7.	<i>Moment of Inertia:</i> Moment of inertia, Radius of gyration and perpendicular axis.
8.	Determination of moment of inertia of simple sections. Mass of moment of inertia.
9.	<i>Friction:</i> Introduction, Critical angle of friction, Friction on horizontal planes
10.	Friction on inclined planes, Wedge and block, Screw jacks, Rolling friction.
11.	<i>Machines:</i> Introduction, Effects of friction, Loss of work, Reversible and irreversible machine,
12.	Law of machine, Wheel and axle, Differential wheel and axle,
13.	Pulley block, Screw jack, Single and double purchase crab,
14.	Worm and Worm wheel, System of pulleys.
15.	<i>Frames:</i> Statically determinate plane frames, Method of joints, Method of sections, Graphical method
16.	<i>Rectilinear Motion,</i> Motion under gravity, Projectiles equation of the path, Maximum height attained,
17.	Time of flight, Horizontal range. Angle of projection, Projectile from a given height, Projectile on an inclined plane, Problems.
18.	Work, Power and Energy: Work, Power, Work done by torque, Energy,Law of conservation

Work, Power and Energy: Work, Power, Work done by torque,
Energy,Law of conservation
Centripetal and centrifugal forces
Centripetal and centrifugal forces
Laws of motion: Newton's Law of motion and their explanation
Laws of motion: Newton's Law of motion and their explanation
Collision of elastic bodies; Impulse and impulsive force, Principle of conservation of momentum
Collision of elastic bodies; Impulse and impulsive force, Principle of conservation of momentum.
Collision of elastic bodies; Impulse and impulsive force, Principle of conservation of momentum
Loss of kinetic energy during impact.
Loss of kinetic energy during impact.
Numericals
Revision

Text Books/References

1. I.B. Prasad. Engineering Mechanics, Khanna Publisher, New Delhi.

2. R.S. Khurmi. Applied Mechanics, S. Chand & Company Ltd., New Delhi

3. S.B. Junnarkar. Applied Mechanics, Charotar Publishing House, New Delhi.

4. Saluja. Applied Mechanics, Satya Prakashan, New Delhi.

DEPARTMENT OF CIVIL ENGINEERING 1 YEAR BE I SEMESTER SESSION 2017-18

1.	Course Code	:	CE 122
2.	Course Title	:	CIVIL ENGINEERING
3.	Credit	:	2(1+1)

:

- 4. Theory Lecture Outlines
- 1. Principle and purpose of plane surveying.
- 2. Chain Surveying: Instrument for chaining, Direct & indirect ranging. Methods of chain along plane & sloping ground
- 3. Base line, check line, Tie line, Offset, Chain angle & recording in field book.
- 4. Compass Surveying: True & Magnetic meridian, whole circle bearing & quadrantal bearing system, construction & use of Prismatic & Surveyor Compass, Local attraction.
- 5. Level and levelling: Definition of various terms used in leveling. Types of Bench mark and their uses. Construction and use of Dumpy and Tilting levels, Leveling staves
- 6. Temporary adjustment of Dumpy level. Simple, differential leveling, fly leveling, longitudinal and cross sectioning, plotting of profile levelling
- 7. Determination of level by line of collimation and rise and fall method
- 8. Arithmetical checks. Level book and record keeping, leveling difficulties and errors in leveling.
- 9. Stones: Different types, properties of good building stones, common testing of stones, Dressing of stones and use of stones in construction.
- 10. Bricks: Types, raw materials, identification, composition. Properties and uses of ordinary bricks, fire resistant and chemical resistant bricks.
- 11. Limes: Definition, sources of lime, slaking of lime, ISI classification of lime.
- 12. Cement: Chemical composition, types of cement, properties, uses and tests on cement.
- 13. Mortars: Proportioning, properties of ingredients and use of lime, cement and gauge mortars.
- 14. *Cement Concrete:* Ingredients, common proportions, properties of fresh hardened concrete, Water cement ratio, curing and consolidation of concrete
- 15. Revision

Text Books/References

- 1. S.C. Rangwala. Engineering Materials, Charotar Book Stall, Anand.
- 2. B.C. Punmiya. Surveying & Field Work (Vol. I), Laxmi Publications, New Delhi.

DEPARTMENT OF CIVIL ENGINEERING 2 YEAR B.TECH II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 221
2.	Course Title	:	STRUCTURAL ANALYSIS

:

3. Credit : 4(3+1)

4. Theory Lecture Outlines

- 1. Deflection of Beams:
- 2. Differential relation between load, shear force, bending moment, slope and deflection.
- 3. Slope & deflection in determinate beams using double integration method
- 4. Macaulay's method
- 5. area moment method
- 6. conjugate beam method
- 7. Propped Cantilever Beam:
- 8. Analysis of propped cantilever beam
- 9. Fixed Beams & Continuous Beams
- 10. Analysis of fixed beams
- 11. continuous beams by three moment theorem
- 12. Springs: Stiffness of springs
- 13. close coiled helical springs
- 14. springs in series and parallel
- 15. Laminated plate springs
- 16. Theories of Failures: Concepts of maximum principal stress theory
- 17. maximum principal strain theory
- 18. maximum shear stress theory
- 19. maximum strain energy theory
- 20. maximum shear strain energy theory.
- 21. Reciprocal Theorem:
- 22. Maxwell's reciprocal theorem
- 23. Betti's theorem.
- 24. Space Frames:
- 25. Analysis of determinate space frames by tension coefficient method.

- 26. Introduction to Energy Methods:
- 27. Strain energy due to bending
- 28. shear and torsion
- 29. Castigleno's first theorem
- 30. Unit load method
- 31. deflection of determinate beams
- 32. deflection of determinate frames
- 33. Numerical
- 34. Numerical
- 35. Numerical
- 36. Numerical
- 37. Numerical
- 38. Numerical
- 39. Numerical
- 40. Revision
- 41. Revision
- 42. Revision
- 43. Revision
- 44. Revision
- 45. Revision

- 1. Fedinard L. Singer & Andrew Pytel, "Strength of Materials".
- 2. Fenner, "Mechanics of Solids".
- 3. Punamia B.C. "Strength of Material & Mechanics of Structures".
- 4. Junarkar,"Mechanics of structures vol. I & II".

COLLEGE OF TECHNOLOGY AND ENGINEERING DEPARTMENT OF CIVIL ENGINEERING 2 YEAR BE II SEMESTER SESSION 2017-18

Course Code : CE 222
 Course Title : HYDRAULICS & HYDRAULIC MACHINES

:

- 3. Credit : 4(3+1)
- 4. Theory Lecture Outlines
 - 1. Flow in Pipes:
 - 2. Laminar flow, Reynolds experiment
 - 3. transition from laminar to turbulent flow.
 - 4. Turbulent Flow (Laws of fluid friction factor, loss of head due to friction and other causes).
 - 5. Hydraulic gradient total energy line
 - 6. Chezy's and Mannings's formula
 - 7. Flow through parallel pipes and pipes in series
 - 8. Power transmission through pipe, condition for maximum power
 - 9. Elementary water hammer concept.
 - 10. Flow Through Open Channels:
 - 11. Steady and uniform flow in open channel
 - 12. , Discharge formulae of Chezy, Manning and Bazin.
 - 13. Most economic section for rectangular, trapezoidal and circular channels.
 - 14. Non-Uniform Flow in open channel. Specific energy of flow.
 - 15. Alternate depths. Critical depth in prismatic channels.
 - 16. Rapid, critical and sub critical flow
 - 17. Mild, steep and critical slopes
 - 18. Classification of surface curves in prismatic channels and elementary computation.
 - 19. *Hydraulic jump*: Hydraulic jump in rectangular channels, conjugate or sequent depths.
 - 20. Laminar Flow: Relation between shear & pressure gradient.
 - 21. Flow between plates & pipes.
 - 22. Equations for velocity distribution, and shear distribution, pressure difference.
 - 23. *Turbulent Flow in Pipes:* Theories of Turbulence,
 - 24. Nikuradse's Experiments Hydro-dynamically smooth & rough boundaries

- 25. Laminar sublayer, Equations of velocity distribution and friction coefficient,
- 26. Stanton Diagram, Moddy's diagram.
- 27. Impact of Free Jets:
- 28. Impact of a jet on a flat or a curved vane,
- 29. Impact of a jet on a moving and stationary vane
- 30. Centrifugal Pumps and Reciprocating pumps:
- 31. Elementary concept of single and multistage pumps
- 32. Efficiencies, Specific speed, characteristic curves.
- 33. Turbines:
- 34. Reaction and Impulse turbines,
- 35. specific speed, Mixed flow turbines
- 36. Elementary concept of Pelton wheel turbine
- 37. Francis turbine,
- 38. Propeller turbine and Kaplan turbine
- 39. Efficiency & characteristics of turbines
- 40. Numerical
- 41. Numerical
- 42. Numerical
- 43. Revision
- 44. Revision
- 45. Revision

- 1. Modi & Seth, 'Hydraulics and Hydraulic Machines.
- 2. Dr. K.R. Arora, 'Fluid Mechanics, Hydraulics and Hydraulic Machines

DEPARTMENT OF CIVIL ENGINEERING 2 YEAR BE IISEMESTER SESSION 2017-18

1.	Course Code	:	CE 223
2.	Course Title	:	BUILDING PLANNING & DESIGN

:

3. Credit : 4(3+1)

4. Theory Lecture Outlines

1. Introduction: Type of building,

- 2. criteria for site selection, site plan.
- 3. *Planning of Building:* Planning, regulations and bylaws.
- 4. Regulation regarding
- 5. : lines of building frontages, built up area of buildings,
- 6. open space around buildings and their heights,
- 7. provision to size, height and ventilation of rooms and apartments and sanitary provisions.
- 8. Principal of Planning:
- 9. Factors affecting planning (aspect, prospect, privacy, grouping, roominess, furniture requirement, sanitation, flexibility, circulation, elegance, economy etc).
- 10. Functional Requirements:
- 11. Functional requirement of a building and its components.
- 12. Structural component of a building.
- 13. Orientation of Buildings:
- 14. Factors affecting orientation,
- 15. Orientation criteria under Indian condition.
- 16. Sun diagram and relevant details.

Ventilation in Buildings:

- 17. Ventilation in Buildings:
- 18. Necessity of ventilation
- 19. factors affecting ventilation
- 20. Functional requirements of a good ventilation system
- 21. systems of ventilation
- 22. Air Conditioning of Buildings:
- 23. Purpose, classification,

- 24. principle and systems of air conditioning.
- 25. Thermal Insulation of Buildings:
- 26. Objectives, advantages, general principle and method of thermal insulation.
- 27. Energy Efficient Buildings:
- 28. Concepts of Energy Efficient Buildings
- 29. Acoustic: Definition
- 30. velocity, frequency
- 31. intensity & reflection of sound, reverberation
- 32. absorption of sound, Sabin's equation.
- 33. Types of absorbent material.
- 34. Noise & its effect.
- 35. Types & transmission of noise.
- 36. Sound insulation of walls & floors.
- 37. Fire Protection in Building:
- 38. General, causes & effect of fire.
- 39. Characteristics of fire resisting material.
- 40. Fire resisting properties of common building material.
- 41. General rules for fire resisting buildings.
- 42. Concept of strong room construction
- 43. Revision
- 44. Revision
- 45. Revision

- 1 Rangwala, S.C., 'Engineering Materials', Charotar Book Stall, Anand,.
- 2 Arora, S.P. and Bindra, 'Building Construction', Dhanpat Rai & Sons, New Delhi.
- 3 Awaasthy, S.N., 'Building Construction', Publishing House, Bhopal

DEPARTMENT OF CIVIL ENGINEERING 2 YEAR BE IISEMESTER SESSION 2017-18

1.	Course Code	:	CE 224
2.	Course Title	:	CONCRETE TECHNOLOGY
3.	Credit	:	4(3+1)

4. Theory Lecture Outlines

1. *Cement:* Constituents of cement and their role,

:

- 2. composition of cement (Bogue's equation)
- 3. hydration of cement, structure of hydrated cement,
- 4. heat of hydration. Tests of cement as per IS code.
- 5. *Aggregates:* Classification, properties and grading of aggregates.
- 6. Tests on aggregates as per IS code.
- 7. Admixture in Concrete:
- 8. Chemical and mineral admixtures (their types and use under different conditions).
- 9. Use of fly ash and silica fume in concrete
- 10. *Concrete:* Grade of concrete,
- 11. proportioning of ingredients,
- 12. water content and its quality for concrete,
- 13. water/cement ratio and its role.
- 14. Concrete Mix Design:
- 15. Controlling factors and Design of mix by IS method.
- 16. Properties of Fresh Concrete:
- 17. workability, air content, flowability,
- 18. factors affecting and methods to determine these properties.
- 19. Standard tests on fresh concrete as per IS code.
- 20. Acceptance Criteria. Quality control for concrete
- 21. Properties of Hardened Concrete:
- 22. Strength, permeability
- 23. creep and shrinkage, factors influencing these properties.
- 24. Standard tests on fresh and hardened concrete as per IS code.
- 25. Concrete Handling in Field:

- 26. Introduction to mixing & batching methods,
- 27. placing, transportation, compaction and curing methods.
- 28. Form Work:
- 29. Requirements, loads on formwork, type & method to provide centering and shuttering for volumes,
- 30. beams, slabs, walls and staircase, slip and moving formwork,
- 31. Indian standard on formwork
- 32. High Strength Concrete
- 33. Production, properties & application
- 34. Special Concretes:
- 35. Introduction to: High performance Concrete,
- 36. Light weight concrete,
- 37. High density concrete,
- 38. Fibre reinforced concrete,
- 39. Polymer concrete composites,
- 40. Self Compacting Concrete Ready mix concrete
- 41. Revision
- 42. Revision
- 43. Revision
- 44. Revision
- 45. Revision

- 1. Shetty M.S. "Concrete Technology"
- 2. Mehta PK & Monteriro P.J.M., "Concrete Microstructure, Properties and Materials".
- 3. Neville A M. & Brooks J.J. "Concrete Technology"

DEPARTMENT OF CIVIL ENGINEERING 2 YEAR BE IISEMESTER SESSION 2017-18

1.	Course Code	:	CE 225
2.	Course Title	:	SURVEYING-I
3.	Credit	:	4(3+1)

- 4. Theory Lecture Outlines
 - 1. *Measurement of Distances:*
 - 2. Plan and Maps (selection of scale),
 - 3. Error in chaining/tape and various precautions
 - 4. Corrections to tape measurements.
 - 5. Degree of accuracy in chaining/tape.
 - 6. Field problems in distance measurement.
 - 7. Obstacle to ranging & chaining.
 - 8. Accuracy & errors (sources, kinds & law of probability).
 - 9. *Measurement of Angle & Direction:*
 - 10. Reference meridians, bearing and azimuths
 - 11. magnetic declination and its variation.
 - 12. Traversing:
 - 13. Chain, compass traversing,
 - 14. open traverse, close traverse,
 - 15. closing error and magnitude of closing error
 - 16. Graphical adjustment of close traverse.
 - 17. Area Calculation:
 - 18. Area of regular boundaries by mathematical formulae,
 - 19. use of trapezoidal & Simpsons formula, their limitations
 - 20. Planimeter (construction, use & area calculations),
 - 21. use of zero circle & solution of numerical problems
 - 22. Theodolite surveying.
 - 23. Details of transit theodolite, definition & terms
 - 24. temporary adjustment of and permanent adjustment of vernier theodolite.
 - 25. Measurement of horizontal and vertical angle.

- 26. Application of theodolite in field problems.
- 27. Sources of error in the thedolite work
- 28. procedure to eliminate/minimize the errors
- 29. *Leveling:* Definitions of various terms in leveling.
- 30. Types of leveling, sources of errors in leveling.
- 31. Curvature and refraction corrections.
- 32. Temporary and permanent adjustment of dumpy & tilting levels.
- 33. Computation of levels.
- 34. Profile leveling (L-Section and cross-sections).
- 35. Special method of spirit leveling, differential leveling.
- 36. Plane Table Surveying:
- 37. Elements of plane table survey, working operations.
- 38. Methods of plane table survey (intersection, radiation, traversing and resection).
- 39. Two point and three point problems by Lehmann's method
- 40. Revision
- 41. Revision
- 42. Revision
- 43. Revision
- 44. Revision
- 45. Revision

- 1. Arora K. R., 'Surveying', Vol. I & II.
- 2. Punmia B.C., 'Surveying' Vol. I & II.
- 3. Clendinning and Oliver, 'Principles and use of surveying instruments'.
- 4. Kanetkar T. P., 'Surveying and leveling', Vol. I & II.
- 5. Duggal S. K., 'Text book-Surveying', Vol. I & II.

DEPARTMENT OF CIVIL ENGINEERING 2 YEAR BE IISEMESTER SESSION 2017-18

1.	Course Code	:	CE 226
2.	Course Title	:	DISASTER MANAGEMENT

3. Credit : 2(1+1)

4. Theory Lecture Outlines

- 1. Definition of Disasters/Hazards, Types of Disasters: Natural and Manmade Disasters.
- 2. Introduction to Tsunami, Flood and Cyclone disasters..

:

- 3. Mitigation, Prevention, Preparedness, Response
- 4. Rehabilitation and Recovery of these disasters
- 5. Introduction to Landslide, Nuclear, Chemical and Fire disasters.
- 6. Mitigation, Prevention, Preparedness, Response,
- 7. Rehabilitation and Recovery of these disasters.
- 8. *Earthquakes:* Earthquake terminology,
- 9. Earthquake Magnitude & Intensity and their measuring scales, Occurrence of earthquakes
- 10. : Plate tectonic theory.
 - Effect of earthquake on structures Planning/architectural concepts,
- 11. Earth quake resistant practices/features.
- 12. Vulnerability of Indian continent to different types of disasters.
- 13. *Various Case studies:* Case study of Bhuj Earthquake (2001), Case of study Bhopal Gas Tragedy (1984),
- 14. Case study of Tsunami in Indian Continent (2006), Case study of Japan Nuclear Tragedy (2011).
- 15. Revision

- 1. G.K. Ghosh, "Disaster Management", A.P.H. Publishing Corporation
- 2. B Narayan, "Disaster Management", A.P.H. Publishing Corporation
- 3. Nikuj Kumar, "Disaster Management", Alfa Publications
- 4. Day R.W. (2002). Geotechnical Earthquake Engineering Handbook, McGraw-Hill Handbooks, New york.

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

- 1. Course Code : CE 321
- 2. Course Title : THEORY OF STRUCTURES-II

:

- 3. Credit : 4 (3+1)
- 4. Theory Lecture Outlines
 - 1. Rolling Load
 - 2. Rolling load on beams
 - 3. Statically determinate frames
 - 4. Shear force due to concerted loads,
 - 5. Bending moments due to concerted loads
 - 6. Uniformly distributed loads for longer span
 - 7. Uniformly distributed loads for shorter than span.
 - 8. Influence Line
 - 9. Influence Line Diagrams for shear force
 - 10. Influence Line Diagrams for Bending moment
 - 11. Influence Line Diagrams for Stress
 - 12. Deflection for simple supported beams
 - 13. Statically determinate frames
 - 14. Deflection for Statically determinate frames
 - 15. Muller-Breslau principle
 - 16. Applications of Muller-Breslau principle
 - 17. Numerical Problems
 - 18. Unsymmetrical Bending
 - 19. Definition of unsymmetrical Bending
 - 20. Location of Neutral Axis
 - 21. Computation of stresses
 - 22. Shear center
 - 23. Location of Shear center for common structural shapes
 - 24. Numerical Problems
 - 25. Numerical Problems

- 26. Arches
- 27. Linear arch
- 28. Eddy's theorem
- 29. Analysis of three hinged arch
- 30. Analysis of two hinged arches
- 31. Moving loads on three hinged
- 32. Moving loads on two hinged arches
- 33. Numerical Problems
- 34. Cable and Suspension Bridges
- 35. Analysis of cable
- 36. Analysis of cables with concentrated loading
- 37. Analysis of cables with continuous loading
- 38. Analysis of two hinged stiffening girder
- 39. Analysis of three hinged stiffening girder
- 40. Influence lines for Bending Moment
- 41. Influence lines for Shear Force
- 42 -45 Numerical Problems

- 1. Junarkar,' Mechanics of Structures' Vol. II.
- 2. Punmia, B.C., 'Strength of materials and Theory of structures' Vol. II.
- 3. Vazirani & Ratwani, 'Analysis of Structures' Vol. II.

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

1.	Course Cod	e	:	CE 322
2.	Course Title	2	:	DESIGN OF CONCRETE STRUCTURES-II
3.	Credit		:	4(3+1)
4.	Theory Lect	ture Outlines	:	
	1.	Continuous Beams		
	2.	Design of continuou	s R.0	C. beams (using I.S. code coefficients)
	3.	Numerical problems	1	
	4.	Portal Frame		

- 5. Design of rectangular portal frame (one storey) with fixed end at base
- 6. Numerical problems
- 7. Design of rectangular portal frame (one bay) with fixed end at base
- 8. Numerical problems
- 9. Yield Line Theory
- 10. Concept of yield line theory
- 11. Design of rectangular slab with U.D.L.
- 12. Design of rectangular slab with simple support conditions
- 13. Numerical problems
- 14. Beams Curved in Plan
- 15. Analysis of ring beams uniformly loaded
- 16. Analysis of ring beams supported on equi-spaced columns
- 17. Numerical problems
- 18. Numerical problems
- 19. Domes
- 20. Design of circular domes with UDL at crown
- 21. Numerical problems
- 22. Design of circular domes with concentrated load at crown
- 23. Numerical problems
- 24. Water Tanks
- 25. Water Tanks (Using working stress design method)

- 26. Design of rectangular and circular tanks (as per I.S. 3370).
- 27. Numerical problems
- 28. Numerical problems
- 29. Design of Intze type tanks (membrane analysis only).
- 30. Numerical problems
- 31. Numerical problems
- 32. Design of column brace type staging.
- 33. Numerical problems
- 34. Numerical problems
- 35. Design of annular raft foundation
- 36. Numerical problems
- 37. Numerical problems
- 38. Elements of Pre stress Concrete
- 39. Principles, systems and advantages
- 40. Material properties
- 41. Losses of pre stress
- 42. Analysis of rectangular and I section, I.S. specifications
- 43. Numerical problems
- 44. Design of a simple rectangular beam for flexure as per I.S. 1343 (excluding end block)
- 45. Numerical problems

- 1. Jain A.K., 'Reinforced Concrete-Limit State Design', Nem Chand & Bros. Roorkee.
- 2. Krishna J. and Jain O.P., 'Plain and Reinforced Concrete, Vol. II. New Chand & Bros. Roorkee.
- 3. Dayaratnam P., "Reinforced Concrete Structures' Oxford and IBH Publishing Co.
- 4. Punamia B.C., 'Reinforced Concrete Structures II', Laxmi Publication Pvt. Ltd.
- 5. Pillai and Menon, 'Reinforced Concrete Design', Tata McGraw Hill, New Delhi.
- 6. Gray W.S. and Mannings G.L. 'Reinforced Concrete Water Towers, Bunkers, Silos & Grantries', Concrete Publication Limited.
- 7. Reynolds C.E. and Steadman, J.C., 'Reinforced Concrete Design Hand Book',
- 8. Relevant IS Codes.

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

- Course Code : CE 323
 Course Title : DESIGN OF STEEL STRUCTURES-II
- 3. Credit : 4(3+1)
- 4. Theory Lecture Outlines
 - 1. Roof Truss
 - 2. Design of steel roof truss including end connections

:

- 3. Numerical Problems
- 4. Numerical Problems
- 5. Numerical Problems
- 6. Light Gauge Structures
- 7. Introduction to design of structures with light gauge sections
- 8. Numerical Problems
- 9. Numerical Problems
- 10. Numerical Problems
- 11. Plate Girder
- 12. Design of plate girder under dead load
- 13. Numerical Problems
- 14. Design of plate girder under super imposed load,
- 15. Numerical Problems
- 16. Numerical Problems
- 17. connections flange plate to flange angles
- 18. Numerical Problems
- 19. connections flange angles to web
- 20. connections to web and flange
- 21. Numerical Problems
- 22. Splicing of web
- 23. Intermediate and bearing stiffeners
- 24. Numerical Problems
- 25. Numerical Problems

- 26. Design of steel and masonry chimney stacks excluding their foundation, (Cantilever & braced type)
- 27. Numerical Problems
- 28. Numerical Problems
- 29. Numerical Problems
- 30. Influence Lines
- 31. Numerical Problems
- 32. Influence lines of Pratt, Warren and 'K' type trusses.
- 33. Numerical Problems
- 34. Numerical Problems
- 35. Steel Bridges
- 36. Design of deck type truss bridges for railway loading
- 37. Numerical Problems
- 38. Numerical Problems
- 39. Design of through type truss bridges for railway loading
- 40. Numerical Problems
- 41. Design of lateral bracing
- 42. Numerical Problems
- 43. Numerical Problems
- 44. Revision
- 45. Revision

- 1. Arya & Ajmani, 'Design of Steel Structure'.
- 2. Punmia B. C., 'Design of Steel Structure'.
- 3. Ramchandra, 'Design of Steel Structure'
- 4. Relevant IS Codes.

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 324
2.	Course Title	:	GEOTECHNICAL ENGINEERING-II
3.	Credit	:	4(3+1)

- 4. Theory Lecture Outlines :
 - 1. Stress in Soil under Surface Loading
 - 2. Bossinesq's and Westergaard's analysis for vertical pressure and its distribution in a soil mass
 - 3. Numerical Problems
 - 4. Vertical stresses, horizontal and shear stresses (due to concentrated loads)
 - 5. Isobar diagram, Vertical stress distribution on a horizontal plane
 - 6. Influence diagram.
 - 7. Vertical stresses at point under line load and strip load
 - 8. Vertical stresses at a point under circular and rectangular loaded area,
 - 9. Numerical Problems
 - 10. New Marks' chart.
 - 11. Pressure bulb and its significance in Foundation exploration.
 - 12. Stresses in soil below foundations
 - 13. Compressibility and Consolidation
 - 14. One-dimensional consolidation of soil, Degree of consolidation
 - 15. consolidation test, Terzaghis one-dimensional consolidation theory
 - 16. Compressibitly parameters, co-efficient of consolidation
 - 17. Preconsolidation pressure and its determination, Normally, over and under consolidated soils
 - 18. Methods of predicting settlement & its rate. Total and differential Settlement
 - 19. Stability of Slopes: Classification of slopes
 - 20. Stability analysis of infinite slopes
 - 21. Stability of finite slopes by Swedish and Friction circle method.
 - 22. Numerical Problems
 - 23. Taylor's stability number curve
 - 24. Earth Pressure, Active, passive and earth pressure at rest

- 25. Rankine's and Coulomb's theories, Horizontal and inclined cohessionless back fill.
- 26. Rebhann's and Culman's graphical method for active earth pressure (vertical and inclined back retaining walls)
- 27. Stability analysis of retaining walls.
- 28. Bearing Capacity of Soils
- 29. *Terminology related to bearing capcaity.*
- 30. *Common types of foundations.*
- 31. Terzaghi and Meyehoffs theory for bearing capacity.
- 32. Rankine's method for minimum depth to foundation Skempton's method.
- *Effect of water table on bearing capacity*
- 34. *IS code method to determine bearing capacity.*
- 35. *Plate load and penetration tests.*
- 36. Site Investigations
- 37. Planning of Investigations, Methods of explorations,
- 38. depth of exploration. Undisturbed and disturbed samples.
- 39. Types of Samples. Brief description of procedures of sampling,
- 40. Transportation and storage of samples, Depth, number & extent of boreholes
- 41. Geophysical methods of investigations.
- 42. Foundations
- 43. Introduction to pile, well and machine foundations.
- 44. Revision
- 45. Revision

- 1. Punmia, B.C., 'Soil Mechanics and Foundations'.
- 2. Ranjan G. & Rao, 'Basic and Applied Soil Mechanics'.
- 3. Singh Alam, 'Soil Engineering in Theory and Practice'.
- 4. Arora, K.R., 'Soil Mechanics & Foundation Engineering'.
- 5. Varghese, 'Foundation Engineering', Prentice' –Hall of India.

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

1.	Course Coo	le	:	CE325
2.	Course Titl	e	:	TRANSPORTATION ENGINEERING-I
3.	Credit	:	:	4(3+1)
4.	Theory Lec	cture Outlines	:	
	1.	Introduction: Importanc	e a	nd Role of Transportation Systems
	2.	Transportation Modes		
	3.	Transportation compari	isor	1
	4.	Highway Planning		
	5.	Highway planning Proc	ess	s (specifically of India)
	6.	Preparation of master p	lan	
	7.	Classification of Roads		
	8.	Road Patterns		
	9.	Highway Alignment (C	ont	trolling Factors and Surveys),
	10.	Introduction to rural roa	ads	
	11.	Introduction to hill roa	ds	

- 12. Highway Geometric
- 13. Design Cross Sectional Elements
- 14. Camber, Sight Distances
- 15. Definition and analysis of SSD and OSD
- 16. Design of Horizontal Alignment
- 17. Numerical Problems
- 18. Numerical Problems
- 19. Super elevation, extra widening, transition curves
- 20. Vertical Alignment (Gradients and types of vertical curves).
- 21. Elementary Traffic Engineering
- 22. Significance of different Traffic Engineering Studies (Speed, Volume, O & D, Parking and Accident's Study)
- 23. Importance and type of Traffic Signs, Signals, Road Marking and Road Intersections.
- 24. Highway Materials

- 25. Desirable Properties
- 26. Testing Procedures and Standard values relating to Stone Aggregates
- 27. Bitumen and Tar.
- 28. Construction: Methods of constructing different types of roads (Stabilized roads, WBM roads, Bituminous roads and Concrete roads).
- 29. Numerical Problems
- 30. Numerical Problems
- 31. Numerical Problems
- 32. Structural Design of Pavements
- 33. Factors affecting design of flexible Pavements
- 34. Factors affecting design of rigid Pavements
- 35. Concept of equivalent single wheel load
- 36. Design of Flexible Pavements by CBR method (as per guidelines of IRC).
- 37. Numerical Problems
- 38. Numerical Problems
- 39. Highway Maintenance
- 40. Brief introduction of failure pattern and maintenance for WBM road
- 41. Maintenance for Bitumen and Concrete Roads.
- 42. Highway Drainage
- 43. Introduction to various types of C.D. works
- 44. Revision
- 45. Revision

- 1. Khanna and Justo, 'Highway Engineering'.
- 2. L.R. Kadiyali, 'Highway Engineering'.
- 3. G.R.Rao, 'Traffic Engineering and Transportation Planning'.
- 4. Chakrobrati and Das, 'Principles of Transportation Engineering'

DEPARTMENT OF CIVIL ENGINEERING 3 YEAR BE II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 326
2.	Course Title	:	MATRIX METHODS OF STRUCTURAL ANALYSIS
3.	Credit	:	2(0+2)
4.	Theory Lecture Outlines	:	
	1. Introduction to Fl	exibility	<i>I</i>

- 2. Stiffness Matrices
- 3. Static and kinematic indeterminacy
- 4. Properties of stiffness and flexibility matrices.
- 5. Compatibility condition
- 6. Analysis of simple structures
- 7. Plane Trusses and Plane Frames
- 8. Stiffness matrix for axial force members (plane truss).
- 9. Stiffness matrix for flexural members (plane frame).
- 10. Stiffness matrix for combined axial force,
- 11. flexure and torsion.
- 12. Transformation matrix,
- 13. stiffness matrices in global coordinates.
- 14. Formation of global equations.
- 15. Solution for displacement and forces under gravity.
- 16. lateral loads
- 17. Space Truss
- 18. Stiffness matrix analysis of space trusses
- 19. Computer Technique
- 20. Computer solution of problems by stiffness method
- 21. Advantage of the stiffness method
- 22. Introduction to Finite Element Analysis
- 23. Introduction (background & general description of the method).
- 24. Analysis procedure
- 25. Element stiffness matrix

- 26. overall stiffness matrix for a structure
- 27. Solution of a problem
- 28. Revision
- 29. Revision
- 30. Revision

- 1. Pandit G.S., & Gupta S.P., "Structural Analysis (A matrix approach)", Tata McGraw Hill Publishing Ltd.
- 2. J.S.Przemieniecki, "Theory of Matrix Structural Analysis", McGraw-Hill.
- 3. Meek, J.L., "Matrix Structural Analysis".
- 4. Kanchi, "Matrix Structural Analysis", Wiley Eastern Ltd., New Delhi
- 5. Cook R.D., Malkas D.S. & Plesha M.E, "Concepts and applications of Finite element analysis", John Wiley & Sons.
- 6. Bathe, K. J., "Finite Element Procedures in Engineering Analysis".
- 7. Desai, C. S. and Kundu T., "Introductory Finite Element Method".

DEPARTMENT OF CIVIL ENGINEERING 4 YEAR B TECH II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 421
2.	Course Title	:	PROJECT EVALUATION & CONSTRUCTION
			MANAGEMENT
3.	Credit	:	3(2+1)

- 4. Theory Lecture Outlines :
 - 1. Introduction
 - 2. Construction project management frame work
 - 3. Planning scope objectives & function of project management
 - 4. Construction Planning: Introduction
 - 5. different types of planning
 - 6. Scheduling, methods of scheduling
 - 7. Job planning & job lay outs
 - 8. Problems
 - 9. Problems
 - 10. Network Techniques
 - 11. Elements of CPM and PERT as applied to the construction projects
 - 12. Errors & updating of Network
 - 13. Control of progress
 - 14. Problems
 - 15. Problems
 - 16. Contract Management: Legal aspect of contracts, laws related to contract
 - 17. Different types of contract
 - 18. Elements of tender operation
 - 19. Contract negotiation & award of work
 - 20. Settlement of disputes
 - 21. Problems
 - 22. Problems
 - 23. Safety in Construction: Introduction
 - 24. Accidents prevention, causes of accidents

- 25. Safety measure to be followed in various construction works like excavation, demolition, explosive handling, hot bitumen work etc.
- 26. Management Information System: Concept of Project Management Information System.
- 27. Benefits of computerized information system.
- 28. Problems
- 29. Revision
- 30. Revision

- 1. Chitkara K.K., 'Construction Project Management.
- 2. Gupta & Gupta, 'Construction Management & Accounts.

DEPARTMENT OF CIVIL ENGINEERING 4 YEAR B TECH II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 422
2.	Course Title	:	PUBLIC HEALTH ENGINEERING-II
3.	Credit	:	4(3+1)

:

4. Theory Lecture Outlines

1. Sewage Disposal: Introduction

- 2. Systems of sewage disposal, conservancy system & water carriage system
- 3. Separate, Combined and partially separate system, their advantage & disadvantage
- 4. Suitability of separate sewerage system for India
- 5. Manholes, drop manhole, catch basins
- 6. flushing devices, grease & sand traps
- 7. Material for sewer pipes
- 8. Shape of sewers
- 9. Laying the sewers
- 10. Problems
- 11. Problems
- 12. Design of Sewers: Quantity of sewage
- 13. Provision for future population
- 14. Quantity of storm water
- 15. Design of sewers
- 16. Numericals
- 17. Numericals
- 18. Estimating storm water by time of concentration method
- 19. Testing of sewer line
- 20. Cleaning of sewers
- 21. Problems
- 22. Problems
- 23. Preliminary Treatment: screening
- 24. Disposal of screening
- 25. Skimming tank
- 26. Grit chamber, disposal of grit

- 27. Sewage Treatment: Principle of sewage
- 28. Sedimentation
- 29. Filtration, intermittent sand filter
- 30. Contact bed, introduction of trickling filter
- 31. Advantage & disadvantage of trickling filter.
- 32. Problems
- 33. Problems
- 34. Introduction of Solid Waste Management: General
- 35. Classification of municipal solid waste
- 36. Quantity of waste generation
- 37. Objectives of solid waste management
- 38. Environmental problems associated with solid waste
- 39. Activities associated with generation of solid waste
- 40. Factors affecting solid waste
- 41. Introduction of sanitary land filling
- 42. Problems
- 43. Problems
- 44. Revision
- 45. Revision

- 1 Hussain, S.K., 'Text book of water supply & sanitary engineering ', Oxford & IBH Publishing co. pvt. Ltd., New Delhi.
- 2 Rangwala, S.C., 'Fundamentals of water supply & sanitary engineering', Charotar Publisher House, Anand.
- 3 Punamia, B.C., 'Water supply & sanitary engineering'. Laxmi publishers. Jodhpur
- 4 Garg, S.K., 'Water supply & sanitary engineering', Khanna publishers. New Delhi.
- 5 'Standard Methods for the examination of water and waste water', 19th edition, prepared and published jointly by ALPHA, AWWA, WEF.

DEPARTMENT OF CIVIL ENGINEERING 4 YEAR B TECH II SEMESTER SESSION 2017-18

1. Course Code	:	CE 423
2. Course Title	:	IRRIGATION ENGINEERING AND
		HYDRAULIC STRUCTURES
3. Credit	:	4(3+1)

- 4. Theory Lecture Outlines :
- 1. Irrigation Practices: Need for Irrigation in India
- 2. Scope (soil moisture & plant growth)
- 3. System of irrigation (surface & subsurface irrigation method)
- 4. Irrigation water quality, water requirements & irrigation scheduling of crops
- 5. Duty & Delta (Base period-relationship)
- 6. Irrigation efficiencies
- 7. Assessment of irrigation water
- 8. Environmental impact of irrigation projects
- 9. Numericals
- 10. Numericals
- 11. Problems
- 12. Canal Irrigation: Sediment Transport
- 13. Importance & Mechanics of transport
- 14. Estimation of bed load & suspended load
- 15. Design of channels in India
- 16. Regime channels
- 17. Kennedy and Lacey's theory
- 18. Water Logging: Water logging & salt efflorescence
- 19. Causes and effects
- 20. Control measures (canal lining)
- 21. Problems
- 22. Problems
- 23. Diversion Head Works: Design for surface and subsurface flows
- 24. Bligh's and Khosla's methods

- 25. Selection of site layout of different parts of a diversion headwork
- 26. Types of weirs and barrages
- 27. Design of weirs on permeable foundation
- 28. Silt excluders and different types of silt ejectors
- 29. Energy dissipation
- 30. Regulator: Types of canals head regulators
- 31. Cross regulator
- 32. Problems
- 33. Problems
- 34. Falls: Classification of falls
- 35. Design of falls.
- 36. Canal Transitions: Cross drainage works
- 37. Flood control works (flood forecasting-methods).
- 38. River Training Works
- 39. Sediment control and silt exclusion devices
- 40. Escape bed bars.
- 41. Drainage: Necessity
- 42. Reclaimation of land and water resources
- 43. Surface and sub surface drainage system and their design
- 44. Numericals
- 45. Revision

DEPARTMENT OF CIVIL ENGINEERING 4 YEAR B TECH II SEMESTER SESSION 2017-18

1.	Course Code	:	CE 424 (a)
2.	Course Title	:	REPAIR AND REHABILITATION OF
			CONCRETE STRUCTURES
3.	Credit	:	4(3+1)

:

- 4. Theory Lecture Outlines
- 1. Deterioration of Concrete Structures: Introduction
- 2. Causes of Deterioration: permeability, carbonation
- 3. Sulphate attack, chloride attack
- 4. Alkali-aggregate reaction, corrosion
- 5. Factors affecting deterioration (environment, cover, types of constituent material, cement content, W/C ratio & workmanship)
- 6. Preventive measures
- 7. Problems
- 8. Corrosion of Reinforcement: Anodic, cathodic reaction
- 9. Chloride ion presence, factor affecting corrosion
- 10. Codal provisions for limiting chloride content
- 11. Methods for corrosion measurement and assessment: Half cell potential and Resistivity
- 12. Cracks: Factors contributing cracks in concrete
- 13. Type of cracks & pattern
- 14. Problems
- 15. Investigation of deteriorated structures: Preliminary test methods (visual observation)
- 16. N.D.T. Non destructive test methods for concrete
- 17. Rebound hammer
- 18. Ultrasonic pulse velocity
- 19. Penetration techniques and pull out test
- 20. Revision
- 21. Materials for Repair: Properties
- 22. Selection criterion
- 23. Types of material (polymers and resins)
- 24. Special Repair Techniques: Grouting

- 25. Shotcrete
- 26. Under water repair: materials
- 27. Equipments
- 28. Precautions process etc.
- 29. Revision
- 30. Revision

- 1. Bungey and Milard ,'Testing of concrete structures'.
- 2. Allen & Edward, 'The repair of concrete structures'
- 3. Mehta, PK &. Monteriro, P.J.M 'Concrete Microstructure, Properties and Materials'.
- 4. Neville, 'Properties of Concrete'.